1,3-Migration of a Methyl Group from Tin to Silicon via a Cationic Intermediate

Saadi M. Dhaher, Colin Eaborn,* and J. David Smith

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Reactions of $(Me_3Si)_2C(SnMe_3)(SiMe_2I)$ with AgY (Y = O_2CMe , O_2CCF_3 , or O_3SCF_3) give exclusively $(Me_3Si)_3CSnMe_2Y$; *i.e.* 1,3-migration of an Me group from an Sn to an Si atom occurs, apparently within an intermediate cation in which an Me group bridges between these atoms.

It has been shown previously that 1,3-migrations of an Me group between silicon centres can take place when a compound of the type $TsiSiR_2I[Tsi = (Me_3Si)_3C]$ reacts with silver salts, the rearranged product (Me₃Si)₂C(SiMe₂Y)(SiR₂Me) being formed either exclusively (e.g., R = Ph) or (e.g., R =Et) with the unrearranged TsiSiEt₂Y (e.g., Y = O_2CMe , O_2CCF_3 , NO_3 , OCN, etc. from AgY, and Y = F from AgBF₄).¹ Similar migrations, but from Ge to Si, take place when the compound (Me₃Si)₂C(GeMe₃)(SiMe₂Br) reacts with AgY, mixtures of the rearranged TsiGeMe₂Y and the unrearranged (Me₃Si)₂C(GeMe₃)(SiMe₂Y) being formed.² The reactions are thought to involve formation of Me-bridged cations (I) which are then attacked by a nucleophile Y^- at either end of the bridge, attack at the least sterically hindered centre usually being favoured. We have now observed similar migration from Sn to Si.

When the tin chloride TsiSnMe₂Cl was treated with AgO₂CMe in CH₂Cl₂, filtration and evaporation of the solution left TsiSnMe₂O₂CMe, m.p. 255 °C (decomp.); $\delta_{\rm H}$ (CH₂Cl₂) 0.24 (27 H, s, SiMe₃), 0.73 [6H, s, ²J (¹H–¹¹⁹Sn) 55.8 Hz, SnMe₂], and 1.96 (3H, s, CMe); $\delta_{\rm C}$ (CDCl₃) 4.6 (s, SiMe₃), 4.5 (s, SnMe₂), 49.5 (s, CMe), and 175 (s, CO); δ (¹¹⁹Sn) (CDCl₃) 101.1 p.p.m. (s); v (CO) 1674 cm⁻¹; m/z

425 ($[M - Me]^+$). The same product was formed, apparently exclusively (though <5% of the unrearranged isomer would have escaped detection), when the silicon iodide (Me₃Si)₂-C(SnMe₃)(SiMe₂I) (the corresponding chloride did not react under the conditions used) was treated in the same way with AgO₂CMe; *i.e.* migration of an Me group from Sn to Si had taken place. Identical products, TsiSnMe₂Y, were likewise obtained from TsiSnMe₂Cl and (Me₃Si)₂C(SnMe₃)(SiMe₂I) in reactions in CH₂Cl₂ with AgO₂CCF₃ or AgO₃SCF₃.[†]

When $AgBF_4$ was used in CH_2Cl_2 , the initial product from TsiSnMe₂Cl was the tetrafluoroborate TsiSnMe₂BF₄, which could be isolated, but decomposed to the fluoride TsiSnMe₂F on prolonged stirring of the product mixture or addition of Et₂O. When AgBF₄ was used with $(Me_3Si)_2C(SnMe_3)$ - $(SiMe_2X)$ (X = Br or I) in CH₂Cl₂, the product was apparently exclusively the rearranged fluoride TsiSnMe₂F [$\delta_{\rm F}$ (in CDCl₃-CH₂Cl₂ relative to external CFCl₃), -203.6 p.p.m., s, $^{1}J(^{19}F-^{119}Sn)$ 2376 Hz; δ_{Sn} (CH₂Cl₂/CDCl₃ relative to internal SnMe₄), 146.9 p.p.m. (d)], but when the solvent was 1:1 v/vCH₂Cl₂-Et₂O the product was exclusively the unrearranged $(Me_3Si)_2C(SnMe_3)(SiMe_2F)$ [δ_F -142.0 p.p.m., septet, $^{3}J(^{1}\text{H}-^{19}\text{F})$ 6.8 Hz, $^{1}J(^{19}\text{F}-^{29}\text{Si})$ 285 Hz; δ_{Sn} (CDCl₃) 7.0 (s)]. The fact that this exceptional behaviour is found in fluoride formation may be associated in part with the very high affinity of silicon for fluorine. It is possible that the BF4- anion transfers an F^- ion to Si more readily when Et_2O is present to complex with the BF₃ formed, and so the nucleophilic attack at the silicon centre in the intermediate cation can take place before the BF₄- liberated by the formation of AgX can diffuse away and attack selectively at the less hindered tin atom. [Change from CH₂Cl₂ to Et₂O as solvent has previously been shown to affect the course of the reaction of TsiSiPhHI with AgBF₄; in CH₂Cl₂ the product is a *ca*. 60:40 mixture of the rearranged (Me₃Si)₂C(SiPhHMe)(SiMe₂F) and the unrearranged TsiSiPhHF, whereas in Et₂O only the latter is formed.3]

† All products mentioned gave satisfactory analyses and spectra, including mass spectra.

It can reasonably be assumed that the reactions of the $(Me_3Si)_2C(SnMe_3)(SiMe_2X)$ compounds proceed through a bridged cation (I, M = Sn), the incoming nucleophile Y⁻ then attacking at the less hindered end of the bridge, as is usually the case. Presumably because of the large size of the tin atom, the product is exclusively that of attack at tin, whereas for the cation (I, M = Ge) attacks at Ge and Si occur to comparable extents.² The results do not permit a firm conclusion on whether the reactions of TsiSnMe₂Cl also proceed through cations (I, M = Sn), but we think it more likely that they involve some type of direct substitution at the M–Cl bond, as appeared to be the case for reactions of (Me₃Si)₃CGeMe₂Cl.²

Preparation of the compounds $(Me_3Si)_2C(SnMe_3)(SiMe_2X)$ involved use of the reagent $(Me_3Si)_2(Me_3Sn)CLi$, which was made by reaction of $(Me_3Si)_2C(SnMe_3)_2$ with a one-molar proportion of MeLi in tetrahydrofuran. The $(Me_3Si)_2-C(SnMe_3)_2$ (cf. ref. 4) was unexpectedly obtained as the sole product when $(Me_3Si)_2CCl_2$ was treated with either a one- or two-molar proportion of Me_3SnLi in tetrahydrofuran.

We thank the S.E.R.C. for support, Dr. A. G. Avent and Mr. B. D. Meadows for help with n.m.r. spectroscopy, Mr. A. M. Greenway and Mr. A. J. Adams for the mass spectra, and Dr. P. D. Lickiss for valuable discussions. The Ministry of Higher Education of Iraq and the University of Basrah are thanked for the award of a research scholarship to S. M. D.

Received, 9th March 1987; Com. 289

References

- 1 C. Eaborn, D. A. R. Happer, S. P. Hopper, and K. D. Safa, J. Organomet. Chem., 1980, 188, 179; C. Eaborn, P. D. Lickiss, G. Marquina-Chidsey, and E. Y. Thorli, J. Chem. Soc., Chem. Commun., 1982, 1326.
- 2 C. Eaborn and A. K. Saxena, J. Chem. Soc., Chem. Commun., 1984, 1482.
- 3 Z. H. Aiube, D. Phil. Thesis, University of Sussex, 1984.
- 4 D. Seyferth and J. L. Lefferts, J. Organomet. Chem., 1976, 116, 257.